US009122803B1

a2z United States Patent (10) Patent No.: US 9,122,803 B1
Michelsen 45) Date of Patent: Sep. 1, 2015
(54) COLLABORATIVE SOFTWARE DEFECT 6,249,882 Bl 6/2001 Testardi
DETECTION 6,473,707 Bl 10/2002 Grey
6,587,969 Bl 7/2003 Weinberg et al.
. . . 6,601,020 Bl 7/2003 Myers
(75) Inventor: John J. Michelsen, Irving, TX (US) 6.668371 B2 12/2003 Hamilton et al.
. 7,392,507 B2 6/2008 Kolawa et al.
(73) Assignee: INTERACTIVE TKO, INC., Plano, TX 7,568,183 Bl* 7/2009 Hardyetal. 7177121
(US) 7,836,346 B1* 11/2010 Davidov et al. . .o 7177124
8,117,591 B1* 2/2012 Michelsen 717/109
® ol : : : : 8,146,057 B1* 3/2012 Michelsen 717/124
(*) Notice: Subject. to any (gs(cilalmeé,. the Iiermgfthls 2004/0025083 Al 22004 Nanja et al.
patent is extended or adjusted under 35 2004/0068560 Al 4/2004 Oulu et al.
U.S.C. 154(b) by 629 days. 2004/0123272 Al 6/2004 Bailey et al.
2004/0225919 Al 11/2004 Reissman et al.
(21) Appl. No.: 13/155,365 2005/0097516 Al* 5/2005 Donnelly etal. 717/124
2006/0048100 Al 3/2006 Levy et al.
(22) Filed: Jun. 7. 2011 2006/0059169 Al 3/2006 Armishev
: .7,
(Continued)
Related U.S. Application Dat
crate pplication Bata OTHER PUBLICATIONS
(60) Provisional application No. 61/407,015, filed on Oct.
26, 2010. LISA Developer’s Guide, Version 2.0, Mar. 13, 2003, Interactive
TKO, Inc., pp. 1-23; <www.itko.com>.*
(51) Int.CL (Continued)
GO6F 9/44 (2006.01)
GO6F 11/36 (2006.01) . .
GOGF 11/34 (200601) Prlmary Examiner — Thuy Dao
GOG6F 9/445 (2006.01) Assistant Examiner — Ben C Wang
(52) U.S.CL (74) Attorney, Agent, or Firm — Patent Capital Group
CPC ... GOG6F 11/3684 (2013.01); GO6F 11/3466
(2013.01); GOG6F 9/44589 (2013.01); Gosr (57) ABSTRACT
11/3688 (2013.01) A request to generate a defect report is received for a defect
(58) Field of Classification Search observed within a software system under test. Context infor-
CPC ... GOG6F 11/3688; GO6F 11/3664; GO6F mation is identified, provided by a plurality of instrumenta-
11/3684; GOGF 9/44589; GOG6F 11/3466; tion units, each instrumentation unit in the plurality of instru-
GOGF 11/3419 mentation units monitoring one or more respective software
See application file for complete search history. components within the system under test. The context infor-
. mation identifies characteristics of transactions performed in
(56) References Cited the system under test. At least some of the identified context

U.S. PATENT DOCUMENTS

5,450,586 A 9/1995 Kuzara et al.
5,581,696 A 12/1996 Kolawa et al.
6,002,871 A 12/1999 Duggan et al.

information is automatically associated with the defect. The
requested defect report is generated to include the context
information associated with the identified defect.

22 Claims, 4 Drawing Sheets

Has a user
requested to submit a defect report?
300

Receive defect report from user

l

Generate screen capture of user’s browser

J

Associate defect report with
context information captured by
instrumentation: system

]

US 9,122,803 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0234293 Al* 10/2007 Nolleretal.c.......... 717/124
2008/0010537 Al* 1/2008 Hayutinetal. 714/38
2008/0141221 Al* 6/2008 Benesovskaetal. 717/124
2009/0007074 Al* 1/2009 Campion et al. 717/124
2009/0089757 Al* 4/2009 Rajanetal. 717/124

8/2009 Vaitheeswaran et al. 714/47
8/2009 Vaitheeswaran et al. 717/124
2010/0251263 Al* 9/2010 Coelho et al. ... 719/314
2011/0067005 Al* 3/2011 Bassinetal. . . 7177127
2011/0258609 Al* 10/2011 Maczuba . .. 717/124
2013/0067298 Al* 3/2013 Lietal. 714/799
2014/0033176 Al* 1/2014 Rama et al. .. 717/124
2015/0095890 Al* 4/2015 StClairetal.c.......... 717/124

2009/0199047 Al*
2009/0199160 Al*

OTHER PUBLICATIONS

Rob Hailstone, LISA Suite—v5.0, Jun. 2010, Interactive TKO
(iTKO), pp. 1-10; <www.itko.com/resourcesdocs/
OvumTechAnalysis_ iTKO_ LISASSuite.pdf>.*

LISA User’s Guide, Version 2.0, Feb. 27, 2003, Interactive TKO,
Inc., pp. 1-130; <www.itko.com>.*

Ochodek et al., “Automatic Transactions Identification in Use
Cases”, Springer Berlin Heidelberg 2008, IFIP 2008, LNCS 5082,
May 1, 2008, pp. 55-68; <http:/link.springer.com/chapter/10.
1007%2F978-3-540-85279-7_ S#page-1>.*

Strecker et al., “Accounting for Defect Characteristics in Evaluations
of Testing Techniques”, 2012 ACM, Vo. 21, No. 3, Article 17, pub.
date: Jun. 2012, pp. 17:1-17:43; <http://dl.acm.org/results.cfm?h=1
&cfid=502083833&cftoken=15311672>*

Malhotra et al., “Defect Collection and Reporting System for Git
based Open Source Software”, 2014 IEEE, ICDMIC 2014, Sep. 5,
2014, pp. 1-7; <http://ieeexplore.icee.org/stamp/stamp.jsp?tp=
&arnumber=6954234> *

LISA, 2.0 User’s Guide, Interactive TKO, Feb. 27, 2003, pp. 1-130.
LISA, 2.0 Developer’s Guide, Interactive TKO, Mar. 13, 2003, pp.
1-23.

OASIS, “ebXML Test Framework DRAFT Document— Version
0.91”, Dec. 2002, The Organization for the Advancement of Struc-
tured Information Standards, 92 pages.

* cited by examiner

US 9,122,803 B1

Sheet 1 of 4

Sep. 1, 2015

U.S. Patent

(7108

0%
uoteolddy

108

asBgRIRQ

£)09

or
wialshs dy3

VS
aseqejeq

L Ol

209

|74
S0IBS

109

/4
19SS Qaph

AT

08

57
UONBLUIOJU] 1X8JLOD)
pue uoday 10oje(

T TN

0F
SINPO 1581,

0Z ainpop
uoiale(] 1085e(
DAIIRI00EI07)

TG 185M0ig

US 9,122,803 B1

Sheet 2 of 4

Sep. 1, 2015

U.S. Patent

iy PR

gy e

AnmER
SEDEOLLENRLTEITY

S

0ce 774 oL

1,14

U.S. Patent

Sep. 1, 2015 Sheet 3 of 4

¢ Start)

US 9,122,803 B1

Has a user

requested to submit a defect report?
300

Receive defect report from user
305

I

Generate screen capture of user's browser
310

l

Associate defect report with
context information captured by
instrumentation system
315

FiG. 3

U.S. Patent Sep. 1, 2015 Sheet 4 of 4 US 9,122,803 B1

Computing Device 400
Memory 406
Processord02
Collaborative Defect
| Detection Module 70
interface 404 -
Test Module 10

P FIG. 4
~__

Defect Report and Context information
75

~__

US 9,122,803 B1

1
COLLABORATIVE SOFTWARE DEFECT
DETECTION

This patent application claims the benefit of priority under
35 U.S.C. §120 of U.S. Provisional Patent Application Ser.
No. 61/407,015, filed Oct. 26, 2010, entitled “COLLABO-
RATIVE SOFTWARE DEFECT DETECTION”, which is
expressly incorporated herein by reference in its entirety.

TECHNICAL FIELD

This invention relates to software testing and, more par-
ticularly, to systems in which different users act as testers and
developers.

BACKGROUND

In many testing scenarios, it is difficult to determine how
each of several different components of a software system is
affecting performance. For example, a software developer
may be unable to determine whether a new application is
responding too slowly due to performance problems within
the application itself, network congestion affecting the appli-
cation’s interactions with a web server from which the appli-
cation obtains necessary data, or a sluggish database that the
web server interacts with. Since each of these components
may be implemented independently, it is difficult to be able to
test all of the components in a manner that captures the
interactions between the components. Furthermore, since
some of the components may not allow modification of their
code for testing purposes, this difficulty may be exacerbated.

This complexity can also frustrate testing scenarios in
which the person performing the testing is not the person
responsible for fixing defects found in the testing process. In
a typical scenario, a quality assurance (QA) analyst interacts
with the software under test. Whenever the QA analyst
detects that the software is not functioning properly, the QA
analyst documents the error and submits a report to the devel-
opment personnel. Unfortunately, such defect reports often
lack enough information and details to enable the develop-
ment team to reproduce and/or fix the defect. This leads to
frustration and wasted time and effort on the parts of both QA
and development personnel.

SUMMARY

In general, one aspect of the subject matter described in this
specification can be embodied in methods that include the
actions of receiving a request to generate a defect report for a
defect observed within a software system under test. Context
information can be identified, using at least one processing
device, the context information provided by a plurality of
instrumentation units, each instrumentation unit in the plu-
rality of instrumentation units monitoring one or more
respective software components within the system under test.
The context information can identify characteristics of trans-
actions performed in the system under test. At least some of
the identified context information can be automatically asso-
ciated with the defect. The requested defect report can be
generated to include the context information associated with
the identified defect.

In another general aspect of the subject matter described in
this specification, a system can include a memory element
storing data, a processor operable to execute instructions
associated with the stored data, and a collaborative defect
detection module. The collaborative defect detection module
can be configured to identify context information in response

10

15

30

40

45

55

2

to a request to generate a defect report for a defect observed
within a software system, the context information provided
by a plurality of instrumentation units monitoring software
components within the system under test, the context infor-
mation identifying characteristics of transactions performed
in the system under test. The collaborative defect detection
module can be further configured to automatically associate
at least some of the identified context information with the
defect for inclusion in the requested defect report.

In still another general aspect, subject matter described in
this specification can be embodied in methods thatinclude the
actions of monitoring a first software component, using an
instrumentation unit interfacing with the first software com-
ponent, the first software component included within a par-
ticular software system. A first set of information can be
captured using the instrumentation unit, the first set of infor-
mation including context information identifying character-
istics of involvement of the first software component in a
particular transaction involving at least one other second soft-
ware component. The first set of information can be provided,
from the instrumentation unit, to a collaborative defect detec-
tion module for use by the collaborative defect detection
module in associating context information captured by the
instrumentation agent with one or more defects identified in
requests to generate one or more defect reports, and inclusion
of the associated context information within the one or more
defect reports.

These and other embodiments can each optionally include
one or more of the following features. The request to generate
the defect report can include defect identification data iden-
tifying characteristics of the identified defect. Automatically
associating at least some of the identified context information
with the defect can include identifying a correlation between
the characteristics identified in the defect identification data
and characteristics of transactions identified in context infor-
mation. The identified correlation can include a correlation
between a particular software component identified in each of
the defect identification information and context information.
The identified correlation can include a correlation between
first timing information identified in the defect identification
information and second timing information identified in the
context information. The first timing information can identify
timing of the defect and the second timing information can
identify timing of a particular transaction performed by the
system under test. The identified correlation can include a
correlation between aspects of a particular transaction iden-
tified in both the defect identification information and context
information. The identified correlation can include a correla-
tion between aspects of a particular data structure identified in
both the defect identification information and context infor-
mation. The defect identification data can include user-en-
tered data describing aspects of the defect as observed by a
user. User-entered data can be collected from a user interface
automatically launched in connection with the request to
generate the defect report. In some instances, the user inter-
face can be launched from an interface of a particular soft-
ware component. Such a user interface can be launched by a
particular instrumentation unit monitoring the particular soft-
ware component. The defect identification data can also
include data automatically collected identifying a context of
the receipt of the request to generate the defect report. The
context of the receipt of the request to generate the defect
report can include a time at which the request to generate the
defect was received and/or an identity of a particular test run
proximate in time with the received request to generate the
defect report. The defect identification data can also include a
screenshot associated with a particular software component

US 9,122,803 B1

3

affected by the observed defect. Such screenshots can be
automatically captured in response to the receipt of the
request to generate the defect report.

Further embodiments can each optionally include one or
more of the following features. Automatically associating at
least some of the identified context information with the
defect can include identifying that the defect is potentially
related to a particular transaction performed in the system and
associating context data identifying characteristics of the par-
ticular transaction with the defect. Context information can
include a first set of information generated by a first instru-
mentation unit in the plurality of instrumentation units moni-
toring a first software component within the system under test
and a second set of information generated by a second instru-
mentation unit in the plurality of instrumentation units moni-
toring a second software component within the system under
test. Each of the first and second sets of information can
identify characteristics of the particular transaction. Further,
the first and second software components can be involved in
the particular transaction. The first set of information can be
captured by an instrumentation unit based, at least in part, on
data sent between the first and second software components
during the particular transaction. Data sent between the first
and second software components can be received by the first
software component from the second software component.
The first set of information can include an identification of the
involvement of the second software component in the particu-
lar transaction. The first set of information captured by an
instrumentation unit can include timing information and an
association between context information and a defect can be
based on a correlation in timing between the defect and one or
more transactions identified in the context information. A
defect, in some instances, can involve a webpage served by a
web server and displayed in a web browser and the request to
generate the defect report is received via the web browser.

Some or all of the features may be computer-implemented
methods or further included in respective systems or other
devices for performing this described functionality. The
details of these and other features, aspects, and implementa-
tions of the present disclosure are set forth in the accompa-
nying drawings and the description below. Other features,
objects, and advantages of the disclosure will be apparent
from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example test system in
which a software architecture including multiple independent
software components is being tested.

FIG. 2 is a screenshot of an example user interface display
window allowing a tester to automatically generate a defect
report that is to be linked with context information captured
by distributed instrumentation units.

FIG. 3 is a flowchart of an example technique for automati-
cally generating a defect report that is associated with context
information captured by distributed instrumentation units.

FIG. 4 is a block diagram of an example computing device,
illustrating how an example collaborative defect detection
module and other example components of a test module can
be implemented in software, according to one embodiment.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 1 is a block diagram of a test system in which an
example software architecture is tested that includes multiple

10

15

20

25

30

35

40

45

50

55

60

65

4

independent software components. For instance, in the par-
ticular example shown, the software architecture includes a
test module 10, and software components including a web
server 20, a service 25, databases 30(1) and 30(2), an enter-
prise resource planning (ERP) system 40, one or more appli-
cations 50, among other components. All or some of these
components can be implemented in software that is executing
on one or more computing devices (e.g., a personal computer,
server, personal digital assistant, smartphone, tablet com-
puter, or the like).

The components shown in FIG. 1 can all be implemented
on the same computing device. However, in many embodi-
ments, at least some of these components (or portions thereof)
will be implemented on different computing devices, all or
some of which can be coupled via one or more networks (e.g.,
a local area network, storage area network, and/or wide area
network such as the Internet). For instance, various software
components within a system can be implemented as a com-
posite or distributed software system, including systems
implemented adopting cloud-based architectures.

Software components tested using an example test system
can include both production-ready components, as well as
software component under development. For instance, at
least some of components may still be in a development
and/or testing phase. Other components may already be in
production (e.g., these components have already been tested
and released and are now being used in a production environ-
ment). The components that are still in development and/or
undergoing testing are referred to as being pre-production
components.

Inthe example of FIG. 1, a web server 20 component can be
provided that is configured to provide web pages to web
browsers such as browser 65. A service 25 can provide any of
a variety of different services for consumption by one or more
clients and can be implemented as any one or more of a
variety of software components. For example, service 25 can
be a web service (e.g., having an interface defined by a web
service definition language (WSDL) file), a web site (e.g., as
implemented by one or more web pages provided by a web
server), enterprise service, or other such service. Further,
services (e.g., 25) can each be implemented as an object or
other component (e.g., an enterprise service bus (ESB) con-
struct, an Enterprise JavaBean™ (EJB), a web component
such as a JavaServer Pages™ (JSP) page or Java™ servlet
component, other standalone Java™ component, or Java™
applet), as an application that includes any of the previously-
mentioned components, or the like.

Databases 30(1) and 30(2) can each include a database
server and/or database management system configured to
assist in responding to requests to access information stored
in a database. Application 50 can be any of a variety of
different applications or programs and can include one or
more of a variety of different software components. Other
components can also be included in a testing system beyond
those illustrated in the particular example of FIG. 1, including
alegacy application operating on a mainframe, a data service,
an order manager, a transactional data store, an enterprise
application integration (EAI) system, among other examples.

In some instances, a system including many independent
components (such as in the example of FIG. 1) can make
testing difficult. For instance, errors caused by a malfunction
in one component can manifest as errors in results returned by
other component, including components downstream from
the malfunctioning component. As shown in the example of
FIG. 1, the operation of web server 20 can depend upon
service 25 and database 30(1). The operation of service 25 can
in turn depend upon database 30(2) and application 50, while

US 9,122,803 B1

5

the operation of database 30(1) in turn depends upon ERP
system 40. Thus, if a QA analyst attempts to test web server
20 by interacting with web server 20 via browser 65, any
defects that are detected during the test may manifest at the
web server 20 but nonetheless originate in components other
than web server 20 (such as service 25 or database 30(1)).
Further, a QA analyst may lack in-depth knowledge concern-
ing each of the components in the system and may have
limited insight into the architecture of the system under test.
Additionally, in some instances, one or more of the software
components in a system can be provided and controlled by
separate entities, thereby decentralizing knowledge concern-
ing the operation of the individual components in the system,
making diagnosis of defects all the more difficult. Conse-
quently, in some instances, without assistance from a collabo-
rative defect detection module, such as described below, the
QA analyst may not be able to properly describe the appro-
priate context of the identified defect in defect reports sub-
mitted to assist developers in reproducing and/or repair the
defect.

In some instances, one or more software components in a
system under test may include instrumentation units each
adapted to monitor activity of a respective software compo-
nent. For instance, in some examples, an instrumentation unit
may be integrated with, coupled to, interface with, or other-
wise be associated with a corresponding software component
and be adapted to monitor and collect data describing the
functioning of the corresponding software component in con-
nection with a test of the software system including the cor-
responding software component. Continuing with the
example of FIG. 1, in one instance, web server 20 can include
instrumentation unit 60(1), service 25 can include instrumen-
tation unit 60(2), ERP system 40 can include instrumentation
unit 60(3), and application 50 can include instrumentation
unit 60(4). These instrumentation units (collectively referred
to as instrumentation units 60) can monitor the operation of
the respective software component in which they are
included, are coupled to, or interface with and send informa-
tion describing the operation of those components back to test
module 10, in connection with the execution of a particular
test.

In some instances, instrumentation units 60 can include
functionality and/or be implemented using techniques similar
to those described in U.S. patent application Ser. No. 12/570,
554, titled “Modeling and Testing Interactions Between
Components of a Software System,” filed Sep. 30, 2009, and
listing Cameron David Bromley and John J. Michelsen as
inventors, which is hereby incorporated by reference in its
entirety as if completely and fully set forth herein. In some
examples, instrumentation units 60 can additionally, option-
ally, or alternatively include functionality and/or be imple-
mented using techniques similar to those described in U.S.
patent application Ser. No. 13/155,363 titled “Modeling and
Testing of Interactions Between Components of a Software
System,” filed on Jun. 7, 2011, and listing Jean-David “JD”
Dahan and John J. Michelsen as inventors, which is hereby
incorporated by reference in its entirety as if completely and
fully set forth herein.

Instrumentation units 60 can be configured to provide vis-
ibility into the operations of each software component
included within a system examined using test module 10.
Coupling an instrumentation unit 60 to a software component
can be referred to instrumenting the software component, i.e.,
for monitoring during a test. Alternatively, instrumentation
units 60 can be disabled during use and operation of software
component outside of a testing environment (e.g., within a
production environment), or during phases of system testing

20

30

35

40

45

55

6

that do not directly involve the particular software compo-
nent. Each instrumentation unit 60 can be further configured
to detect requests and responses being sent to and from the
component (e.g., from and to other components in the system)
in which that instrumentation agent is embedded. Each instru-
mentation unit 60 can also be configured to generate infor-
mation about the detected requests and/or responses and to
report that information, for example, to test module 10. Addi-
tionally, each instrumentation unit 60 can be configured to
detect and report on activity that occurs internally to the
component in which the instrumentation agent is embedded.
In response to detecting a request, response, and/or other
activity to be monitored, each instrumentation agent 60 can
be configured to detect one or more characteristics and gather
associated data relating to that activity and/or the monitoring
of that activity by the instrumentation agent. Such character-
istics can include a wide array of information such as a system
clock value, current processor and/or memory usage, con-
tents of the request, contents of the response to the request,
identity of the requester that generated the request, identity of
the responder generating the response to the request, Java™
virtual machine (JVM) statistics, standard query language
(SQL) queries (SQLs), number of database rows returned in a
response, logging information (e.g., messages logged in
response to a request and/or response), error messages,
simple object access protocol (SOAP) requests, values gen-
erated by the component that includes the instrumentation
agent but that are not returned in the response to the request,
web service invocations, EJB method invocations, EJB entity
lifecycle events, heap sizing, among many other types of
information. Characteristics can also include the thread name
of a thread processing the request to generate the response,
the class name of the class of an object invoked to process the
request to generate the response, a Web Service signature
used to contain the request and/or response, arguments pro-
vided as part of the request and/or response, a session iden-
tifier, an ordinal (e.g., relating to an order within a transac-
tion), the duration of time spent processing the request and/or
generating the response, state information, a local Internet
Protocol (IP) address, a local port, a remote IP address, a
remote port, among many other examples. Such information,
characteristics, and associated data gathered by an instrumen-
tation agent can be embodied in data records, or frames,
including frames specific to a particular transaction to which
the characteristics apply. Further, this information can be
used as context information and be compared against similar
information and information types gathered in connection
with a request to generate a defect report (e.g., in connection
with user entries in a defect reporting form or interface).
Test module 10 can store information returned to by the
instrumentation units 60. Such information returned from the
instrumentation units can be referred to as context informa-
tion. This information can be used, for instance, to trace the
flow of execution through the system under test for each
transaction, so that information that describes characteristics
of a portion of a particular transaction is grouped with other
information describing the same transaction. Additionally,
context information can be used to identify characteristics of
request and responses sent between software components, the
amount of data involved in a transaction, the identity and roles
of software components within a transaction, as well as any
other characteristic including those examples listed above
and others. Further, a collaborative defect detection module
70 can be provided for use in analyzing information returned
from different instrumentation agents to identify relation-
ships and correlations between the returned information and
group individual subsets of information, each of which can be

US 9,122,803 B1

7

generated by a different instrumentation agent 60, into one or
more sets of information describing complete transactions
involving, for example, multiple different software compo-
nents.

In the example of FIG. 1, instrumentation agent 60(1) on
web server 20 can monitor activities and operations per-
formed by web server 20, including the service of web pages
provided using web server 20. Instrumentation agent 60(1)
can collect a myriad of data concerning requests for web
resources, user interactions with web page components, calls
to and the receipt of data from other services (e.g., 25) and
databases (e.g., 30(1)), among other examples. Further,
instrumentation agent 60(1) can additionally provide a tester
with functionality for launching a defect reporting interface
for use by the tester (and test module 10) in generating defect
reports relating to the operation of and transactions involving
web server 20. Such a reporting interface can be launched, for
example, in connection with the inclusion of a special icon,
text, or other selectable area displayed in connection with an
interface of web server (or browser 65 displaying web pages
served by web server 20). Alternatively, a reporting interface
can also be launched in response to the entry of special com-
binations of keys. While in some embodiments, the software
component and test module can directly handle requests to
launch a defect report interface, such functionality can be
handled by the instrumentation agent assigned to the corre-
sponding software component.

When a tester encounters a potential defect, the tester can
access the defect reporting interface. This interface can
prompt the tester to provide various information, such as the
tester’s name, the description of the defect, and the like. The
interface can also provide the tester with an option to create a
screenshot of the browser window in which the potential
defect was encountered. Once the tester has entered all of the
information and selected to submit the defect report, the
interface then provides this information to collaborative
defect detection module 70.

In response to receiving a defect report or a request to
generate, collaborative defect detection module 70 searches
for context information associated with the defect report. For
instance, one or more databases, storage clements, data
records, or other such data resources can be searched that
store frames and context information gathered, intercepted,
and generated by various instrumentation units in connection
with the instrumentation units’ monitoring of various soft-
ware components in the system. Such a search can be based
on information identified a defect report or request to gener-
ate the defect report, including automatically and user-en-
tered information. For instance, in the example of FIG. 1,
defect information identifying the web server that generated
the web page from which the defect report was generated,
information identifying the web session in which the defect
was detected, timestamps, and the like can be used as the basis
of a search. Once matching information is found, the defect
report can be associated with matching context information
for one or more related transactions.

In other instances, additional operations can be performed
to determine whether context information and frames
returned in the search are relevant to the identified defect and
should be associated with, and appended to, the correspond-
ing defect report. For instance, returned context information
can be processed against information included in the defect
report (or request to generate the defect report) to identify
correlations between attributes of the defect documented in
the defect report and attributes of certain software compo-
nents and transactions documented in the context information
gathered by the instrumentation units. For example, a corre-

5

10

15

20

25

30

35

40

45

55

60

65

8

lation in timing of the defect and one or more transactions can
be identified. A common transaction, data structure, software
component, network connection, or other aspect can also be
identified as described in both the defect report and certain
context information. Further, upon identitying such a corre-
lation, additional context information relating to and describ-
ing the involvement of a particular transaction or one or more
software components, can also be included and associated
with the defect report.

Thus, the system of FIG. 1 provides a web-based interface
for reporting defects in a manner that allows associated
underlying context information, which is not necessarily
available or known to the tester that reported the defects, to be
associated with the reported defects. This information can be
used, in some examples, to supplement the information pro-
vided in the defect report as well as to recreate the situation in
which the defect arose. The developer that processes this
information can thereby be provided with the pertinent infor-
mation needed to recreate the situation and more thoroughly
address the identified defect.

It should be appreciated that the example of FIG. 1, is a
non-limiting example, offered for purposes of illustration
only. Additional implementations and aspects can be realized
using systems, principles, and features similar to those
described above. As an example, a defect can be identified in
connection with an application, service, or other software
component other than a web server, with dependencies dif-
ferent than those described in the example of FIG. 1. Further,
defect reports can be generated in connection with the testing,
analysis, or use of any type of software component, including
production and pre-production software components and sys-
tems. Indeed, defect reports can be requested in connection
with a test of a system as well as in connection with live
execution of a system, including the testing or execution of
the system’s constituent software components.

FIG. 2 is an example screenshot 200 of a portion of an
example user interface window that can allow a tester-user to
request the automatic generation of a defect report that is
linked with transaction characteristics captured by an instru-
mentation system including one or more instrumentation
agents 60. In this example, a tester has selected to access the
defect reporting interface 205. Other interfaces can also be
made available, such as an interface showing flow paths of
system under test (e.g., by selecting tab 210), details and
characteristics of components under test (e.g., by selecting
tab 215), and statistics generated in connection with a testing
session (e.g., by selecting tab 220). The defect reporting
interface can include several fields (e.g., fields 225, 230, 235,
240, 245, etc.) allowing the tester to enter information about
a defect identified by the tester, for instance, with assistance
ofatest module (e.g., 10). For instance, a tester-user can enter
data into fields to provide a title or short description of the
identified defect, issue, or event (e.g., at 225), along with data
identifying the tester (e.g., at 230) and a defect identifier
and/or category (e.g., at 235). The tester can indicate the
severity or importance of an identified defect or event (e.g., at
240), as well as a description of the defect or event, for
instance, as observed by the tester-user (e.g., at 245). A
screenshot 250 of a user interface of the application or soft-
ware component affected by the defect or event can also be
automatically captured in connection with the generation of a
defect report. In some instances, available screenshots can be
captured automatically in response to a user request to launch
the defect reporting interface 205, while in other instances, a
test can specify whether to capture screenshots of user inter-
faces of the effected software component as well as which
user interfaces or user interface views. Further, in some

US 9,122,803 B1

9

instances, additional metadata can be captured in connection
with the capturing of a screenshot (e.g., 250), such as meta-
data identifying the software components, transactions, logic,
etc. associated with the instance of the user interface captured
by the screenshot. Such metadata can also be used to assist in
associating certain instrumentation-unit-provided context
information with the defect report.

Upon entering data into fields of the defect reporting inter-
face window 205, as well as optionally including user inter-
face screenshot data of effected software components, the
tester can select to send or generate the defect report. In
response, a defect report can be generated that includes the
information and data specified by the tester-user through
interface 205. Generating the defect report can also result in
the identification of frames or data records generated by vari-
ous instrumentation units 60 and stored, for instance, in
memory and accessible by tester 10 and/or collaborative
defect detection module 70. Based on information entered by
the tester in the defect reporting interface 205, together with
other data that can be automatically collected by the defect
reporting interface in connection with the launch of the defect
reporting interface, such as the identity of software compo-
nents active, tested, or under inspection (e.g., during viewing
of component details (e.g., at 215) by the tester) when the
defect report was requested, the time 255 the defect report
was requested, etc., one or more frames generated by instru-
mentation units 60 can be identified as relevant to the present
defect report. For instance, an observed or user-entered time
of the defect can be examined to find one or more frames that
include timing information correlating to the time of the
defect, to identify that the one or more frames may be relevant
to the defect. Other correlations can be identified between
information recorded in instrumentation-agent-generated
frames and data gathered in connection with a defect report
generation request or interface, such as the identity of one or
more software components, the identity of a particular test, or
particular data (e.g., its identification, data amount, etc.) at
issue in connection with the identified defect, among other
examples. Such frames can include context information gath-
ered from software component during transactions by one or
more instrumentation units 60. Consequently, context infor-
mation from the frames can be copied, pulled, linked to,
integrated with, or otherwise associated with a generated
defect report.

In one illustrative example, in FIG. 2, a user has identified
that, during the test of a particular e-commerce website
hosted by a web server 20 in communication/cooperation
with one or more backend software components (e.g., 30(1),
25, 40, etc.), that the website has failed to operate as expected.
More specifically, in this example, the tester-user has identi-
fied that although the tester created an account in connection
with the test of the website, a particular pay discount was not
applied in a subsequent test step, contrary to what was desired
or expected from the operation of the website. Upon identi-
fying this defect, the tester-user requested (e.g., using a key-
stroke combination, user interface element or control, etc.)
generation of a defect report to identify and report details
concerning the defect. The user has entered details concern-
ing the defect as well as a screenshot 250 of a user interface of
the website. In response to requesting the report and/or com-
pleting the fields (e.g., 225, 230, 235, 240, 245) of the pre-
sented defect reporting interface 205, instrumentation-agent-
generated frames can be identified and context information
collected therefrom, specifying the context of the identified
defect. For instance, in this examples, such context informa-
tion might include information describing characteristics of a
database (e.g., 30(1)) to manage user account data, as well as

30

40

45

55

10

data describing transactions between software components
(such as logic provided by one or more other software com-
ponents to calculate particular pay discounts, among other
examples. With this context data, developers can observe the
generated report, including the user-entered details, captured
screenshot 250, and automatically-gathered context informa-
tion from instrumentation agents monitoring the software
components at issue, to develop a more complete understand-
ing of the defect as well as, in some instances, recreate the
instance of the defect, for instance, using test module 10, so as
to remedy the defect as well as the underlying cause(s) of the
defect.

FIG. 3 is a flowchart of an example technique for automati-
cally generating a defect report that includes transaction char-
acteristics captured by an instrumentation system. A user can
request to submit a defect report, as shown at 300. In
response, a defect report can be received from the user, as
shown at 305. The received defect report can include user
inputs entered in fields of the defect report. Further, in some
implementations, a screen capture of the user’s browser win-
dow can be generated in which the defect was detected, as
shown at 310. The defect report and screen shot, if available,
can then be associated with context information for one or
more associated transactions, as shown at 315. Such tech-
niques can be performed, for example, using a test module
and/or collaborative defect detection module 70 in coopera-
tion with instrumentation agents collecting context data from
various software components within a particular software
system.

FIG. 4 is ablock diagram of an example computing system,
illustrating how such a collaborative defect detection module
70 and other components of a testing system might be imple-
mented in software. As shown, a computing system 400 can
include one or more processors 402 (e.g., a MiCroprocessor,
programmable logic device (PLD), or application specific
integrated circuit (ASIC), or multiple such processors), one
or more interfaces 404, and one or more memory elements
406. Instructions executable by processor 402 can be stored in
memory 406. These instructions can be executable to imple-
ment test module 10 and/or collaborative defect detection
module 70. Computing system 400 can be a personal com-
puter, server, personal digital assistant, cell phone, laptop,
smartphone, tablet computer, workstation, or the like.
Memory 406 can each include various types of computer
readable storage media such as RAM (Random Access
Memory), ROM (Read Only Memory), Flash memory,
MEMS (Micro Electro-Mechanical Systems) memory, and
the like. Processor 402, memory 406, and interface(s) 404 are
coupled to send and receive data and control signals by a bus
or other interconnect.

Interfaces 404 can each include an interface to a storage
device on which instructions and/or data (e.g., such as data
identifying a test case, a defect report, and/or context infor-
mation, including information associating a defect report
with a set of context information) are stored. Interfaces 404
can also each include an interface to anetwork, such as alocal
area network (LAN) or wide area network (WAN) such as the
Internet, for use in communicating other devices and compo-
nents. Such an interface can allow test module 10 to send
requests to and receive responses from services and other test
system components via a network. Similarly, such an inter-
face can allow a test module to receive context information
generated by instrumentation units. Interface 404 can also
include interfaces to various peripheral Input/Output (1/O)
devices, such as a monitor, on which a graphical display (e.g.,

US 9,122,803 B1

11

allowing a user to view a model and control the testing of
system under test by interacting with the model) can be dis-
played.

In some instances, test module 10 can include collaborative
defect detection module 70. In other instances, collaborative
defect detection module 70 can be provided as a standalone
component. In either implementation, collaborative defect
detection module 70 can be configured to associate context
information received from several different instrumentation
units with a defect report submitted by a tester.

Program instructions and data implementing various soft-
ware components such as test module 10 can be stored on
various computer readable storage media such as memory
406. In some embodiments, such program instructions can be
stored on a computer readable storage medium such as a CD
(Compact Disc), DVD (Digital Versatile Disc), hard disk,
optical disk, tape device, floppy disk, and the like. In order to
be executed by a processor, the instructions and data are
loaded into memory from the other computer readable stor-
age medium. The instructions and/or data can also be trans-
ferred to a computing device for storage in memory via a
network such as the Internet or upon a carrier medium.

It is noted that the above figures illustrate specific
examples. In other embodiments, different components can
be used to implement the testing functionality described
above. For example, while specific software components
have been described as implementing specific functionality,
this functionality can be implemented by different compo-
nents than those depicted herein. For example, the function-
ality of test module 10 can be subdivided into multiple other
test management components or integrated into another com-
ponent. Furthermore, the specific components depicted in the
figures herein can be combined or subdivided into fewer or
additional components.

Although this disclosure has been described in terms of
certain implementations and generally associated methods,
alterations and permutations of these implementations and
methods will be apparent to those skilled in the art. For
example, the actions described herein can be performed in a
different order than as described and still achieve the desir-
able results. As one example, the processes depicted in the
accompanying figures do not necessarily require the particu-
lar order shown, or sequential order, to achieve the desired
results. In certain implementations, multitasking and parallel
processing may be advantageous. Additionally, other user
interface layouts and functionality can be supported. Other
variations are within the scope of the following claims.

Embodiments of the subject matter and the operations
described in this specification can be implemented in digital
electronic circuitry, or in computer software, firmware, or
hardware, including the structures disclosed in this specifica-
tion and their structural equivalents, or in combinations of one
or more of them. Embodiments of the subject matter
described in this specification can be implemented as one or
more computer programs, i.e., one or more modules of com-
puter program instructions, encoded on computer storage
medium for execution by, or to control the operation of, data
processing apparatus. Alternatively or in addition, the pro-
gram instructions can be encoded on an artificially generated
propagated signal, e.g., a machine-generated electrical, opti-
cal, or electromagnetic signal that is generated to encode
information for transmission to suitable receiver apparatus
for execution by a data processing apparatus. A computer
storage medium can be, or be included in, a computer-read-
able storage device, a computer-readable storage substrate, a
random or serial access memory array or device, or a combi-
nation of one or more of them. Moreover, while a computer

10

15

20

25

30

35

40

45

50

55

60

65

12

storage medium is not a propagated signal per se, a computer
storage medium can be a source or destination of computer
program instructions encoded in an artificially generated
propagated signal. The computer storage medium can also be,
or be included in, one or more separate physical components
ormedia (e.g., multiple CDs, disks, or other storage devices),
including a distributed software environment or cloud com-
puting environment.

The operations described in this specification can be imple-
mented as operations performed by a data processing appa-
ratus on data stored on one or more computer-readable stor-
age devices or received from other sources. The terms “data
processing apparatus,” “processor,” “processing device,” and
“computing device” can encompass all kinds of apparatus,
devices, and machines for processing data, including by way
of'example a programmable processor, a computer, a system
on a chip, or multiple ones, or combinations, of the foregoing.
The apparatus can include general or special purpose logic
circuitry, e.g., a central processing unit (CPU), a blade, an
application specific integrated circuit (ASIC), or a field-pro-
grammable gate array (FPGA), among other suitable options.
While some processors and computing devices have been
described and/or illustrated as a single processor, multiple
processors may be used according to the particular needs of
the associated server. References to a single processor are
meant to include multiple processors where applicable. Gen-
erally, the processor executes instructions and manipulates
data to perform certain operations. An apparatus can also
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, a cross-
platform runtime environment, a virtual machine, or a com-
bination of one or more of them. The apparatus and execution
environment can realize various different computing model
infrastructures, such as web services, distributed computing
and grid computing infrastructures.

A computer program (also known as a program, software,
software application, script, module, (software) tools, (soft-
ware) engines, or code) can be written in any form of pro-
gramming language, including compiled or interpreted lan-
guages, declarative or procedural languages, and it can be
deployed in any form, including as a standalone program or as
a module, component, subroutine, object, or other unit suit-
able for use in a computing environment. For instance, a
computer program may include computer-readable instruc-
tions, firmware, wired or programmed hardware, or any com-
bination thereof on a tangible medium operable when
executed to perform at least the processes and operations
described herein. A computer program may, but need not,
correspond to a file in a file system. A program can be stored
in a portion of a file that holds other programs or data (e.g.,
one or more scripts stored in a markup language document),
in a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib-
uted across multiple sites and interconnected by a communi-
cation network.

Programs can be implemented as individual modules that
implement the various features and functionality through
various objects, methods, or other processes, or may instead
include a number of sub-modules, third party services, com-
ponents, libraries, and such, as appropriate. Conversely, the
features and functionality of various components can be com-
bined into single components as appropriate. In certain cases,

US 9,122,803 B1

13

programs and software systems may be implemented as a
composite hosted application. For example, portions of the
composite application may be implemented as Enterprise
Java™ Beans (EJBs) or design-time components may have
the ability to generate run-time implementations into differ-
ent platforms, such as J2EE (Java™ 2 Platform, Enterprise
Edition), ABAP (Advanced Business Application Program-
ming) objects, or Microsoft’s .NET, among others. Addition-
ally, applications may represent web-based applications
accessed and executed via a network (e.g., through the Inter-
net). Further, one or more processes associated with a par-
ticular hosted application or service may be stored, refer-
enced, or executed remotely. For example, a portion of a
particular hosted application or service may be a web service
associated with the application that is remotely called, while
another portion of the hosted application may be an interface
object or agent bundled for processing at a remote client.
Moreover, any or all of the hosted applications and software
service may be a child or sub-module of another software
module or enterprise application (not illustrated) without
departing from the scope of this disclosure. Still further, por-
tions of a hosted application can be executed by a user work-
ing directly at a server hosting the application, as well as
remotely at a client.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable proces-
sors executing one or more computer programs to perform
actions by operating on input data and generating output. The
processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g.,an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing actions in accor-
dance with instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a mobile telephone, a personal digital assistant (PDA),
tablet computer, a mobile audio or video player, a game
console, a Global Positioning System (GPS) receiver, or a
portable storage device (e.g., a universal serial bus (USB)
flash drive), to name just a few. Devices suitable for storing
computer program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The pro-
cessor and the memory can be supplemented by, or incorpo-
rated in, special purpose logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., amouse or a trackball, by which the user
can provide input to the computer. Other kinds of devices can
be used to provide for interaction with a user as well; for

10

15

20

25

30

35

40

45

50

55

60

65

14

example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback, or
tactile feedback; and input from the user can be received in
any form, including acoustic, speech, or tactile input. In addi-
tion, a computer can interact with a user by sending docu-
ments to and receiving documents from a device, including
remote devices, that are used by the user.

Embodiments of the subject matter described in this speci-
fication can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server,
orthatincludes a front end component, e.g., aclient computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
subject matter described in this specification, or any combi-
nation of one or more such back end, middleware, or front end
components. The components of the system can be intercon-
nected by any form or medium of digital data communication,
e.g., a communication network. Examples of communication
networks include any internal or external network, networks,
sub-network, or combination thereof operable to facilitate
communications between various computing components in
a system. A network may communicate, for example, Internet
Protocol (IP) packets, Frame Relay frames, Asynchronous
Transfer Mode (ATM) cells, voice, video, data, and other
suitable information between network addresses. The net-
work may also include one or more local area networks
(LANSs), radio access networks (RANs), metropolitan area
networks (MANs), wide area networks (WANSs), all or a
portion of the Internet, peer-to-peer networks (e.g., ad hoc
peer-to-peer networks), and/or any other communication sys-
tem or systems at one or more locations.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data (e.g., an HTML page) to a client
device (e.g., for purposes of displaying data to and receiving
user input from a user interacting with the client device). Data
generated at the client device (e.g., a result of the user inter-
action) can be received from the client device at the server.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of any inventions or of what may be claimed, but
rather as descriptions of features specific to particular
embodiments of particular inventions. Certain features that
are described in this specification in the context of separate
embodiments can also be implemented in combination in a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
bedescribed above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be

US 9,122,803 B1

15

understood as requiring such separation in all embodiments,
and it should be understood that the described program com-
ponents and systems can generally be integrated together in a
single software product or packaged into multiple software
products.

Thus, particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. In some cases, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. In addition, the processes depicted in the
accompanying figures do not necessarily require the particu-
lar order shown, or sequential order, to achieve desirable
results.

What is claimed is:
1. A method comprising:
receiving a request from a user to generate a defect report
for a defect observed by the user within a software
system under test, wherein the request comprises infor-
mation identifying characteristics of the defect and a
screenshot of a user interface of the software system
under test corresponding to the observed defect;

identifying, using at least one processing device, context
information provided by a plurality of instrumentation
units, each instrumentation unit in the plurality of instru-
mentation units monitoring one or more respective soft-
ware components within the system under test, wherein
the context information identifies characteristics of a
plurality of transactions performed in the system under
test and the context information comprises characteris-
tics of detected requests and responses in each of the
plurality of transactions and activity internal to at least
one of the one or more software components during one
or more of the plurality of transactions;

searching the context information, based on the request, to

determine a particular subset of the context information
corresponding to the characteristics of the defect,
wherein the particular subset of the context information
is determined based on identifying a correlation between
the characteristics of the defect and characteristics of
transactions identified in the particular subset of the
context information;

automatically, using at least one processing device, asso-

ciating the particular subset of the identified context
information with the defect; and

generating the requested defect report to include the con-

text information associated with the identified defect.

2. The method of claim 1, wherein the identified correlation
includes a correlation between a particular software compo-
nent identified in each of the request and the particular subset
of the context information.

3. The method of claim 1, wherein the identified correlation
includes a correlation between first timing information iden-
tified in the request and second timing information identified
in the particular subset of the context information.

4. The method of claim 3, wherein the first timing infor-
mation identifies timing of the defect and the second timing
information identifies timing of a particular transaction per-
formed by the system under test.

5. The method of claim 1, wherein the identified correlation
includes a correlation between aspects of a particular trans-
action identified in both the request and the particular subset
of the context information.

6. The method of claim 1, wherein the identified correlation
includes a correlation between aspects of a particular data
structure identified in both the request and the particular
subset of the context information.

15

40

45

16

7. The method of claim 1, wherein the request includes
user-entered data describing aspects of the defect as observed
by a user to be included in the defect report.

8. The method of claim 7, wherein the user-entered data is
collected from a user interface automatically launched in
connection with the request to generate the defect report.

9. The method of claim 8, wherein the user interface is
launched from an interface of a particular software compo-
nent.

10. The method of claim 9, wherein the user interface is
launched by a particular instrumentation unit monitoring the
particular software component.

11. The method of claim 1, wherein the request includes
data automatically collected identifying a context of the
receipt of the request to generate the defect report.

12. The method of claim 11, wherein the context of the
receipt of the request to generate the defect report includes at
least one of a set including a time at which the request to
generate the defect was received and an identity of a particular
test run proximate in time with the received request to gen-
erate the defect report.

13. The method of claim 1, wherein the screenshot is asso-
ciated with a particular software component affected by the
observed defect.

14. The method of claim 13, wherein the screenshot is
automatically captured in response to the receipt of the
request to generate the defect report.

15. The method of claim 1, wherein automatically associ-
ating at least some of the identified context information with
the defect includes:

identifying that the defect is potentially related to a par-

ticular transaction performed in the system; and
associating context data identifying characteristics of the
particular transaction with the defect.

16. The method of claim 1, wherein the context informa-
tion includes a first set of information generated by a first
instrumentation unit in the plurality of instrumentation units
monitoring a first software component within the system
under test and a second set of information generated by a
second instrumentation unit in the plurality of instrumenta-
tion units monitoring a second software component within
the system under test, wherein each of the first and second sets
of information identify characteristics of a particular transac-
tion performed in the system.

17. The method of claim 16, wherein the first and second
software components are involved in the particular transac-
tion.

18. The method of claim 1, wherein the defect involves a
webpage served by a web server and displayed in a web
browser and the request to generate the defect report is
received via the web browser.

19. An article comprising non-transitory, machine-read-
able media storing instructions operable to cause at least one
processor to perform operations comprising:

receiving a request from a user to generate a defect report

for a defect observed by the user within a software
system under test, wherein the request comprises infor-
mation identifying characteristics of the defect and a
screenshot of a user interface of the software system
under test corresponding to the observed defect;
identifying context information provided by a plurality of
instrumentation units, each instrumentation unit in the
plurality of instrumentation units monitoring one or
more respective software components within the system
under test, wherein the context information identifies
characteristics of a plurality of transactions performed in
the system under test and the context information com-

US 9,122,803 B1

17

prises characteristics of detected requests and responses
in each of the plurality of transactions and activity inter-
nal to at least one of the one or more software compo-
nents during one or more of the plurality of transactions;

searching the context information, based on the request, to
determine a particular subset of the context information
corresponding to the characteristics of the defect,
wherein the particular subset of the context information
is determined based on identifying a correlation between
the characteristics of the defect and characteristics of
transactions identified in the particular subset of the
context information;

automatically associating the particular subset of the iden-
tified context information with the defect; and

generating the requested defect report to include the con-
text information associated with the identified defect.

20. A system comprising:

a memory element storing data;

a processor operable to execute instructions associated

with the stored data;

collaborative defect detection module configured to:

search context information in response to a request to
generate a defect report for a defect observed within a
software system, wherein the request comprises infor-
mation identifying characteristics of the defect, the
characteristics include a screenshot of a user interface
of'the software system under test corresponding to the
observed defect, the context information is searched
to identity a particular subset of the context informa-
tion corresponding to the characteristics of the defect,
the context information identifies characteristics of a
plurality of transactions performed in the system
under test, the particular subset of the context infor-
mation is determined based on identifying a correla-
tion between the characteristics of the defect and char-
acteristics of one or more transactions identified in the
particular subset of the context information, the con-
text information is provided by a plurality of instru-
mentation units monitoring software components
within the system under test, and the context informa-
tion comprises characteristics of detected requests
and responses in the transactions and activity internal

20

25

35

40

18

to atleast one of the one or more software components
during the transactions; and

automatically associate the particular subset of the iden-
tified context information with the defect for inclu-
sion in the requested defect report.

21. A method comprising:
monitoring a first software component, using an instru-

mentation unit interfacing with the first software com-
ponent, the first software component included within a
particular software system;

capturing a first set of information using the instrumenta-

tion unit, the first set of information including context
information identifying characteristics of involvement
of the first software component in a particular transac-
tion involving at least one other second software com-
ponent, wherein the characteristics comprise a charac-
teristic of data sent between the first and second software
components during the particular transaction and a char-

acteristic of an activity internal to the first software com-
ponent during the particular transaction, and the first set
of information further identifies involvement of the sec-
ond software component in the particular transaction;
and

providing, using the instrumentation unit, the first set of

information to a collaborative defect detection module

for use by the collaborative defect detection module in:

associating at least a portion of the context information
captured by the instrumentation unit with one or more
defects identified in requests to generate one or more
defect reports, and one or more screenshots of a user
interface of the particular software system, wherein
the screenshots are to illustrate an observed defect
associated with at least one of the defect reports, and

automatically including the associated context informa-
tion within the one or more defect reports.

22. The method of claim 21, wherein the first set of infor-
mation includes timing information and the model includes a
representation of the ordering of the respective involvement
of'the first and second software components in the particular
transaction.

